咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Multi-Scale-Matching neural ne... 收藏

Multi-Scale-Matching neural networks for thin plate bending problem

作     者:Lei Zhang Guowei He Lei Zhang;Guowei He

作者机构:The State Key Laboratory of Nonlinear MechanicsInstitute of MechanicsChinese Academy of SciencesBeijing 100190China School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing 100049China 

出 版 物:《Theoretical & Applied Mechanics Letters》 (力学快报(英文版))

年 卷 期:2024年第14卷第1期

页      面:11-15页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 080102[工学-固体力学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0801[工学-力学(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foun-dation of China (NSFC) Basic Science Center Program for"Multiscale Problems in Nonlinear Mechanics"(Grant No. 11988102) supported by the National Natural Science Foundation of China (NSFC)(Grant No. 12202451) 

主  题:Singular perturbation Physics-informed neural networks Boundary layer Machine learning 

摘      要:Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation *** resolve this issue,multi-scale-matching neural networks are proposed to solve the singular perturbation *** by matched asymptotic expansions,the solution is decomposed into inner solutions for small scales and outer solutions for large scales,corresponding to boundary layers and outer regions,***,to conform neural networks,we introduce exponential stretched variables in the boundary layers to avoid semiinfinite region *** results for the thin plate problem validate the proposed method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分