基于情感融合和层次注意力机制的情感分析
Sentiment analysis based on sentiment fusion and hierarchical attention mechanism作者机构:上海理工大学光电信息与计算机工程学院上海200093
出 版 物:《智能计算机与应用》 (Intelligent Computer and Applications)
年 卷 期:2024年第14卷第1期
页 面:63-69页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家重点研发计划项目(2018YFB1702601)
摘 要:针对两个反义词在相似语境下转化成词向量后空间距离相近,容易造成情感信息丢失,循环神经网络等的特征提取方式容易导致网络依赖增强,难以充分提取局部性特征。针对第一个问题,本文提出情感嵌入模块,在词嵌入的过程中加入情感向量与语义信息作为网络的输入层;针对第二个问题,本文提出层次注意力机制,将融合后的词向量切片形成两个子序列,将单词的词向量输入到双向门控循环网络,利用注意力机制对隐藏层进行加权计算,获得子序列文本信息,通过多个网络层获得整个文本序列信息;最后,经过softmax函数输出文本情感极性。在NLPIR微博语料库和NLPCC2014的微博公开数据集进行实验,表明该情感分析模型在准确率上有所提高,证明了模型的有效性。