咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Calibration of Gridded Wind Sp... 收藏

Calibration of Gridded Wind Speed Forecasts Based on Deep Learning

作     者:Xuan YANG Kan DAI Yuejian ZHU Xuan YANG;Kan DAI;Yuejian ZHU

作者机构:National Meteorological CentreBeijing100081China NOAA/NWS/NCEP/Environmental Modeling CenterCollege ParkMaryland20740USA 

出 版 物:《Journal of Meteorological Research》 (气象学报(英文版))

年 卷 期:2023年第37卷第6期

页      面:757-774页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 070601[理学-气象学] 0706[理学-大气科学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:Supported by the National Key Research and Development Program of China (2021YFC3000905) Key Innovation Team Fund of China Meteorological Administration (CMA2022ZD04) 

主  题:deep learning wind speed grid forecasting loss function statistical post-processing 

摘      要:The challenges of applying deep learning(DL) to correct deterministic numerical weather prediction(NWP) biases with non-Gaussian distributions are discussed in this *** is known that the DL UNet model is incapable of correcting the bias of strong winds with the traditional loss functions such as the MSE(mean square error),MAE(mean absolute error),and WMAE(weighted mean absolute error).To solve this,a new loss function embedded with a physical constraint called MAE_MR(miss ratio) is *** performance of the UNet model with MAE_MR is compared to UNet traditional loss functions,and statistical post-processing methods like Kalman filter(KF) and the machine learning methods like random forest(RF) in correcting wind speed biases in gridded forecasts from the ECMWF high-resolution model(HRES) in East China for lead times of 1–7 *** addition to MAE for full wind speed,wind force scales based on the Beaufort scale are derived and *** to raw HRES winds,the MAE of winds corrected by UNet(MAE_MR) improves by 22.8% on average at 24–168 h,while UNet(MAE),UNet(WMAE),UNet(MSE),RF,and KF improve by 18.9%,18.9%,17.9%,13.8%,and 4.3%,*** with MSE,MAE,and WMAE shows good correction for wind forces 1–3 and 4,but negative correction for 6 or ***(MAE_MR) overcomes this,improving accuracy for forces 1–3,4,5,and 6 or higher by 11.7%,16.9%,11.6%,and 6.4% over HRES.A case study of a strong wind event further shows UNet(MAE_MR) outperforms traditional post-processing in correcting strong wind biases.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分