咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Neural-based inexact graph de-... 收藏

Neural-based inexact graph de-anonymization

作     者:Guangxi Lu Kaiyang Li Xiaotong Wang Ziyue Liu Zhipeng Cai Wei Li 

作者机构:Department of Computer ScienceGeorgia State UniversityAtlantaUSA St.George’s SchoolVancouerCanada 

出 版 物:《High-Confidence Computing》 (高置信计算(英文))

年 卷 期:2024年第4卷第1期

页      面:52-59页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Science Foundation of U.S.(2011845 2315596 and 2244219) 

主  题:Graph de-anonymization Graph convolutional network Neural tensor network 

摘      要:Graph de-anonymization is a technique used to reveal connections between entities in anonymized graphs,which is crucial in detecting malicious activities,network analysis,social network analysis,and *** its paramount importance,conventional methods often grapple with inefficiencies and challenges tied to obtaining accurate query graph *** paper introduces a neural-based inexact graph de-anonymization,which comprises an embedding phase,a comparison phase,and a matching *** embedding phase uses a graph convolutional network to generate embedding vectors for both the query and anonymized *** comparison phase uses a neural tensor network to ascertain node *** matching procedure employs a refined greedy algorithm to discern optimal node ***,we comprehensively evaluate its performance via well-conducted experiments on various real *** results demonstrate the effectiveness of our proposed approach in enhancing the efficiency and performance of graph de-anonymization through the use of graph embedding vectors.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分