Bilevel optimization for automated machine learning:a new perspective on framework and algorithm
作者机构:School of Software Technology Dalian University of Technology School of Intelligence Science and Technology Peking University
出 版 物:《National Science Review》 (国家科学评论(英文版))
年 卷 期:2024年第11卷第8期
页 面:17-19页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Key R&D Program of China (2022YFA1004101) the National Natural Science Foundation of China(U22B2052 and 62276004)
主 题:automated machine learning bilevel optimization meta feature learning neural architecture search hyperparameter optimization
摘 要:Machine learning (ML) has witnessed an unprecedented evolution in recent years,becoming a key driver of building artificial intelligence systems. With cuttingedge technologies such as Alpha Go [1]and ChatGPT [2], the power and versatility of ML have been demonstrated across diverse applications. However, designing effective ML solutions in realworld application scenarios can be challenging and time-consuming, thus paving the way for the emergence of automated machine learning (AutoML).