Event-triggered impulsive synchronization of heterogeneous neural networks
作者机构:College of ScienceNanjing University of Posts and Telecommunications Jiangsu Engineering Lab for IOT Intelligent Robots (IOTRobot)Nanjing University of Posts and Telecommunications Key Laboratory of Smart Manufacturing in Energy Chemical ProcessMinistry of EducationEast China University of Science and Technology School of AutomationNanjing University of Posts and Telecommunications School of MathematicsSoutheast University Yonsei Frontier LabYonsei University
出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))
年 卷 期:2024年第67卷第2期
页 面:331-332页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 080201[工学-机械制造及其自动化]
基 金:supported by Qing Lan Project of Jiangsu Province,Key Project of Natural Science Foundation of China (Grant No.61833005) National Natural Science Foundation of China (Grant Nos.42375016,61873326,62073172) Shanghai International Science & Technology Cooperation Program (Grant No.21550712400)
摘 要:Synchronization is one of the most important dynamics in neural networks. Several scholars have studied the quasi-synchronization of heterogeneous neural networks [1],wherein external controllers play a significant role. Impulsive control, a kind of energy-saving control, is activated instantaneously only at specific discrete moments.