基于改进YOLOv5的玻璃纤维管纱缺陷检测方法
Detection method of glass fiber tube yarn defect based on improved YOLOv5作者机构:西安工程大学陕西西安710600 陕西省人工智能联合实验室西安工程大学分部陕西西安710600
出 版 物:《棉纺织技术》 (Cotton Textile Technology)
年 卷 期:2023年第51卷第12期
页 面:12-19页
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
基 金:国家自然科学基金项目(62176204) 陕西省创新能力支撑计划项目(2021TD-29) 陕西省秦创原“科学家+工程师”队伍建设项目(2023KXJ-061) 陕西高校青年创新团队项目
主 题:管纱缺陷检测 机器视觉 深度学习 YOLOv5 结构重参数化技术 注意力机制模块 平均精度均值
摘 要:针对玻璃纤维管纱缺陷检测中存在的抗干扰能力差、检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5的玻璃纤维管纱缺陷检测方法(BY-YOLO)。首先建立了高效重参数网络(ER-Net)作为主干网络对管纱缺陷特征进行优化提取,利用结构重参数化技术和精确金字塔池化模块(R-SPP)提升检测速度,减弱特征噪声信息对检测效果的影响;其次提出了深度注意力路径聚合网络(DA-PANet)作为颈部网络对管纱的多尺度特征进行融合,通过特征增强模块Depth-Mixer和注意力机制模块增强管纱缺陷特征的语义信息,提高模型对多尺度缺陷的检测能力。试验结果表明:该方法能够将玻璃纤维管纱缺陷检测的mAP值提高至94.43%,同时将其检测速度提升到103帧/s。与其他主流的检测模型相比,该研究提出的方法拥有更高的鲁棒性、准确性和实时性。