GENERALIZED JACOBI SPECTRAL GALERKIN METHOD FOR FRACTIONAL-ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS
作者机构:School of Mathematical SciencesSouth China Normal UniversityGuangzhou 510631China Hunan Key Laboratory for Computation and Simulation in Science and EngineeringXiangtan UniversityXiangtan 411105China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2024年第42卷第2期
页 面:355-371页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the State Key Program of National Natural Science Foundation of China(Grant No.11931003) by the National Natural Science Foundation of China(Grant Nos.41974133,12126325) by the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200620)
主 题:Generalized Jacobi spectral Galerkin method Fractional-order Volterra integ-ro-differential equations Weakly singular kernels Convergence analysis
摘 要:For fractional Volterra integro-differential equations(FVIDEs)with weakly singular kernels,this paper proposes a generalized Jacobi spectral Galerkin *** basis functions for the provided method are selected generalized Jacobi functions(GJFs),which can be utilized as natural basis functions of spectral methods for weakly singular FVIDEs when appropriately *** developed method s spectral rate of convergence is determined using the L^(∞)-norm and the weighted L^(2)-*** results indicate the usefulness of the proposed method.