State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters
State estimation for neural neutral-type networks with mixed time-varying delays and Markovian jumping parameters作者机构:Department of Information and Communication Engineering/Electrical Engineering Yeungnam University214-1 Dae-DongKyongsan 712-749Republic of Korea Department of MathematicsGandhigram Rural Institute-Deemed UniversityGandhigram - 624 302TamilnaduIndia
出 版 物:《Chinese Physics B》 (中国物理B(英文版))
年 卷 期:2012年第21卷第10期
页 面:29-37页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 080802[工学-电力系统及其自动化] 0808[工学-电气工程] 07[理学] 08[工学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:Project supported by the 2010 Yeungnam University Research Grant
主 题:neural networks state estimation neutral delay Markovian jumping parameters
摘 要:This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping *** addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov *** construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean *** criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.