咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Formation of an Original Datab... 收藏

Formation of an Original Database and Development of Innovative Deep Learning Algorithms for Detecting Face Impersonation in Online Exams

Formation of an Original Database and Development of Innovative Deep Learning Algorithms for Detecting Face Impersonation in Online Exams

作     者:Konan Yao Tiémoman Kone Venance Saho Zoh Konan Yao;Tiémoman Kone;Venance Saho Zoh

作者机构:Department of Computer Science and Digital Science Virtual University of Côte d’Ivoire Abidjan Côte d’Ivoire 

出 版 物:《Open Journal of Applied Sciences》 (应用科学(英文))

年 卷 期:2023年第13卷第12期

页      面:2223-2232页

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Online Exams Face Recognition Convolutional Neural Networks Data Bias 

摘      要:The issue related to the risk of identity impersonation, where one person can be replaced by another in online exam surveillance systems, poses challenges. This study focuses on the effectiveness of detecting attempts of identity impersonation through face substitution during online exams, with the aim of ensuring the integrity of assessments. The goal is to develop facial recognition algorithms capable of precisely detecting these impersonations, training them on a tailored database rather than biased generic data. An original database of student faces has been created. An algorithm leveraging advanced deep learning techniques such as depthwise separable convolution has been developed and evaluated on this database. We achieved very high levels of precision, reaching an accuracy rate of 98% in face detection and recognition.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分