Characterization of Lipschitz Functions via Commutators of Multilinear Singular Integral Operators in Variable Lebesgue Spaces
作者机构:Department of MathematicsMudanjiang Normal UniversityMudanjiang 157011P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2023年第39卷第12期
页 面:2465-2488页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China(Grant No.11571160) the Research Funds for the Educational Committee of Heilongjiang(Grant No.2019-KYYWF-0909) the Reform and Development Foundation for Local Colleges and Universities of the Central Government(Grant No.2020YQ07)
主 题:Multilinear commutator singular integral operator Lipschitz function variable exponent
摘 要:Let 6=(bi,b2,...,bm)be a collection of locally integrable functions and T,the com-mutator of multilinear singular integral operator *** by L(δ)and L(δ(·))the Lipschitz spaces and the variable Lipschitz spaces,*** main purpose of this paper is to establish some new characterizations of the(variable)Lipschitz spaces in terms of the boundedness of multilinear commutator T∑b in the context of the variable exponent Lebesgue spaces,that is,the authors give the necessary and sufficient conditions for bj(j=1,2,...,m)to be L(δ)or L(δ(·))via the boundedness of multilinear commutator from products of variable exponent Lebesgue spaces to variable exponent Lebesgue *** authors do so by applying the Fourier series technique and some pointwise esti-mate for the *** key tool in obtaining such pointwise estimate is a certain generalization of the classical sharp maximal operator.