SAM struggles in concealed scenes—empirical study on “Segment Anything”
作者机构:School of ComputingAustralian National University Computer Vision Lab(CVL)ETH Zurich Department of Electronic EngineeringTsinghua University College of Computer ScienceNankai University
出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))
年 卷 期:2023年第66卷第12期
页 面:278-280页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Key R&D Program of China (Grant No. 2022ZD0119101)
摘 要:Large models open up new opportunities for artificial intelligence. In the past few months, there has been a boom in training foundation models on the vast linguistic corpus to produce amazing applications, e.g., Chat GPT, *** natural language processing and multimodal learning communities have been revolutionized. Large models’ capacity for generalization and emergent makes it easy for users to believe that large models can solve anything.