咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >SAM struggles in concealed sce... 收藏

SAM struggles in concealed scenes—empirical study on “Segment Anything”

作     者:Ge-Peng JI Deng-Ping FAN Peng XU Bowen ZHOU Ming-Ming CHENG Luc VAN GOOL Ge-Peng JI;Deng-Ping FAN;Peng XU;Bowen ZHOU;Ming-Ming CHENG;Luc VAN GOOL

作者机构:School of ComputingAustralian National University Computer Vision Lab(CVL)ETH Zurich Department of Electronic EngineeringTsinghua University College of Computer ScienceNankai University 

出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))

年 卷 期:2023年第66卷第12期

页      面:278-280页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by National Key R&D Program of China (Grant No. 2022ZD0119101) 

摘      要:Large models open up new opportunities for artificial intelligence. In the past few months, there has been a boom in training foundation models on the vast linguistic corpus to produce amazing applications, e.g., Chat GPT, *** natural language processing and multimodal learning communities have been revolutionized. Large models’ capacity for generalization and emergent makes it easy for users to believe that large models can solve anything.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分