咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Self-consistent Clustering Ana... 收藏

Self-consistent Clustering Analysis-Based Moving Morphable Component(SMMC)Method for Multiscale Topology Optimization

作     者:Yangfan Li Jiachen Guo Hengyang Li Huihan Chen Yangfan Li;Jiachen Guo;Hengyang Li;Huihan Chen

作者机构:Department of Mechanical EngineeringNorthwestern UniversityEvanstonIL 60208USA Theoretical and Applied Mechanics ProgramNorthwestern UniversityEvanstonIL 60208USA Department of Engineering MechanicsTsinghua UniversityBeijing 100084China 

出 版 物:《Acta Mechanica Solida Sinica》 (固体力学学报(英文版))

年 卷 期:2023年第36卷第6期

页      面:884-898页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Northwestern University  NU 

主  题:Topology optimization Moving morphable component method Multiscale concurrent design Reduced-order model 

摘      要:Current multiscale topology optimization restricts the solution space by enforcing the use of a few repetitive microstructures that are predetermined,and thus lack the ability for structural concerns like buckling strength,robustness,and ***,in this paper,a new multiscale concurrent topology optimization design,referred to as the self-consistent analysis-based moving morphable component(SMMC)method,is *** with the conventional moving morphable component method,the proposed method seeks to optimize both material and structure simultaneously by explicitly designing both macrostructure and representative volume element(RVE)-level *** examples with transducer design requirements are provided to demonstrate the superiority of the SMMC method in comparison to traditional *** proposed method has broad impact in areas of integrated industrial manufacturing design:to solve for the optimized macro and microstructures under the objective function and constraints,to calculate the structural response efficiently using a reduced-order model:self-consistent analysis,and to link the SMMC method to manufacturing(industrial manufacturing or additive manufacturing)based on the design requirements and application areas.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分