咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Effect of constant eddy viscos... 收藏

Effect of constant eddy viscosity assumption on optimization using a discrete adjoint method

作     者:Hangkong WU Dingxi WANG Xiuquan HUANG Hangkong WU;Dingxi WANG;Xiuquan HUANG

作者机构:School of Power and EnergyNorthwestern Polytechnical UniversityXi’an 710072China 

出 版 物:《Chinese Journal of Aeronautics》 (中国航空学报(英文版))

年 卷 期:2023年第36卷第11期

页      面:102-118页

核心收录:

学科分类:080103[工学-流体力学] 08[工学] 080104[工学-工程力学] 0825[工学-航空宇航科学与技术] 0801[工学-力学(可授工学、理学学位)] 

基  金:supported by the National Science and Technology Major Project,China(No.2017-II-0009-0023) China’s 111 project(No.B17037) sponsored by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China 

主  题:Aeroelastic Aerodynamic Constant eddy viscosity assumption Discrete adjoint method Sensitivity Turbomachinery 

摘      要:This paper presents a thorough study of the effect of the Constant Eddy Viscosity(CEV)assumption on the optimization of a discrete adjoint-based design optimization ***,the algorithms of the adjoint methods with and without the CEV assumption are presented,followed by a discussion of the two methods’solution ***,the sensitivity accuracy,adjoint solution stability,and Root Mean Square(RMS)residual convergence rates at both design and offdesign operating points are compared between the CEV and full viscosity adjoint methods in ***,a multi-point steady aerodynamic and a multi-objective unsteady aerodynamic and aeroelastic coupled design optimizations are performed to study the impact of the CEV assumption on *** gradient-based optimizers,the Sequential Least-Square Quadratic Programming(SLSQP)method and Steepest Descent Method(SDM)are respectively used to draw a firm *** results from the transonic NASA Rotor 67 show that the CEV assumption can deteriorate RMS residual convergence rates and even lead to solution instability,especially at a near stall *** with the steady cases,the effect of the CEV assumption on unsteady sensitivity accuracy is much ***,the CEV adjoint solver is still capable of achieving optimization goals to some extent,particularly if the flow under consideration is benign.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分