咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Two-Stage Online Debiased Lass... 收藏

Two-Stage Online Debiased Lasso Estimation and Inference for High-Dimensional Quantile Regression with Streaming Data

作     者:PENG Yanjin WANG Lei PENG Yanjin;WANG Lei

作者机构:School of Statistics and Data ScienceKLMDASRLEBPS and LPMCNankai UniversityTianjin 300071China 

出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))

年 卷 期:2024年第37卷第3期

页      面:1251-1270页

核心收录:

学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学] 

基  金:supported by the Fundamental Research Funds for the Central Universities the National Natural Science Foundation of China under Grant No.12271272 

主  题:Adaptive tuning asymptotic normality debiased lasso online updating quantile regres-sion 

摘      要:In this paper,the authors propose a two-stage online debiased lasso estimation and statistical inference method for high-dimensional quantile regression(QR)models in the presence of streaming *** the first stage,the authors modify the QR score function based on kernel smoothing and obtain the online lasso smoothed QR estimator through iterative *** estimation process only involves the current data batch and specific historical summary statistics,which perfectly accommodates to the special structure of streaming *** the second stage,an online debiasing procedure is carried out to eliminate biases caused by the lasso penalty as well as the accumulative approximation error so that the asymptotic normality of the resulting estimator can be *** authors conduct extensive numerical experiments to evaluate the performance of the proposed *** experiments demonstrate the effectiveness of the proposed method and support the theoretical *** application to the Beijing PM2.5 Dataset is also presented.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分