Deep Learning-Based Radio Map for MIMO-OFDM Downlink Precoding
作者机构:Peng Cheng LaboratoryShenzhen 518055China The School of Electrical Engineering and Telecommunicationsthe University of New South WalesSydneyNSW 2052Australia
出 版 物:《Journal of Communications and Information Networks》 (通信与信息网络学报(英文))
年 卷 期:2023年第8卷第3期
页 面:203-211页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 12[管理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0810[工学-信息与通信工程] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术] 081001[工学-通信与信息系统] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:This work was supported in part by the Key Area Research and Development Program of Guangdong Province under Grant 2020B0101110003 in part by the National Natural Science Foundation of China under Grant 62201309.The associate editor coordinating the review of this paper and approving it for publication was L.Bai
主 题:radio map deep learning MIMO taskoriented approach
摘 要:Radio map is an advanced technology that mitigates the reliance of multiple-input multiple-output(MIMO)beamforming on channel state information(CSI).In this paper,we introduce the concept of deep learning-based radio map,which is designed to be generated directly from the raw CSI *** accordance with the conventional CSI acquisition mechanism of MIMO,we first introduce two baseline schemes of radio map,i.e.,CSI prediction-based radio map and throughput predictionbased radio *** fully leverage the powerful inference capability of deep neural networks,we further propose the end-to-end structure that outputs the beamforming vector directly from the location *** rationale behind the proposed end-to-end structure is to design the neural network using a task-oriented approach,which is achieved by customizing the loss function that quantifies the communication *** results show the superiority of the task-oriented design and confirm the potential of deep learning-based radio map in replacing CSI with location information.