咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >未来月球熔岩管科研工作站能源供给的数值模拟 收藏

未来月球熔岩管科研工作站能源供给的数值模拟

Numerical simulation of energy supply for future lunar lava tube research station

作     者:周书红 胡才博 张怀 石耀霖 ZHOU ShuHong;HU CaiBo;ZHANG Huai;SHI YaoLin

作者机构:中国科学院大学地球与行星科学学院中国科学院计算地球动力学重点实验室北京100049 

出 版 物:《地球物理学报》 (Chinese Journal of Geophysics)

年 卷 期:2023年第66卷第11期

页      面:4490-4503页

核心收录:

学科分类:070801[理学-固体地球物理学] 07[理学] 0708[理学-地球物理学] 070401[理学-天体物理] 0704[理学-天文学] 

基  金:国家自然科学基金(41774106,42074117) 中央高校基本科研业务费专项资金联合支持。 

主  题:熔岩管 月球科研站 有限元数值模型 热流密度 加热功率 

摘      要:在月球熔岩管内建立科研工作站可以避免很多自然灾害,因此月球熔岩管长期被认为是人类探索月球建造科研基地的理想场所.Apollo 15和Apollo 17实测资料表明月表具有极低的导热系数,所以月球风化层的温度在深度超过50 cm的区域保持在较低的恒定值(~250 K).因此,在熔岩管内建立科研工作站需要考虑维持人类宜居温度的供热问题.在不考虑熔岩管轴向热量流失的情况下,本文建立了二维瞬态热传导的有限元数值模型,定量研究了位于赤道和极地地区的单位轴向长度(1 m)熔岩管加热到宜居温度的时间、维持在宜居温度所需要的供给功率以及利用太阳能给熔岩管供电等问题.结果表明,对于直径为20 m的单位长度的管洞,在Apollo测量点和极地地区分别采用6280 W及16328 W的加热功率一个月球日内就可以将其加热到宜居温度(~293.15 K).在维持宜居温度阶段,熔岩管壁热量在向四周传递的同时热流也在逐渐减小.结果也表明,为了节约能源,月球科学研究站应建在赤道地区平均温度较高、深度较深、直径较大的熔岩管处.而且如果在熔岩管壁处增加0.5 m厚度的风化层作为绝热层可以进一步减小加热功率和热量损失.因此,在加热阶段位于赤道地区直径为20 m且含绝热层的熔岩管在前三年需要20L~120L W(L(m)为实际熔岩管的轴向长度)的加热功率和0.06L~0.4L m^(2)的太阳能电池板.3年后,仅需15L W的功率和0.05L m^(2)的太阳能电池板即可满足室温需求.我们的研究将为今后在月球熔岩管内建立科学研究基地提供科学指导.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分