咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Efficient Finite Difference Me... 收藏

Efficient Finite Difference Methods for the Numerical Analysis of One-Dimensional Heat Equation

Efficient Finite Difference Methods for the Numerical Analysis of One-Dimensional Heat Equation

作     者:Md. Shahadat Hossain Mojumder Md. Nazmul Haque Md. Joni Alam Md. Shahadat Hossain Mojumder;Md. Nazmul Haque;Md. Joni Alam

作者机构:Department of Mathematics Comilla University Kotbari Bangladesh Department of Mathematical Sciences Kent State University Kent OH USA 

出 版 物:《Journal of Applied Mathematics and Physics》 (应用数学与应用物理(英文))

年 卷 期:2023年第11卷第10期

页      面:3099-3123页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Explicit Scheme Implicit Scheme C-N Scheme CFL Condition 

摘      要:In this paper, we investigate and analyze one-dimensional heat equation with appropriate initial and boundary condition using finite difference method. Finite difference method is a well-known numerical technique for obtaining the approximate solutions of an initial boundary value problem. We develop Forward Time Centered Space (FTCS) and Crank-Nicolson (CN) finite difference schemes for one-dimensional heat equation using the Taylor series. Later, we use these schemes to solve our governing equation. The stability criterion is discussed, and the stability conditions for both schemes are verified. We exhibit the results and then compare the results between the exact and approximate solutions. Finally, we estimate error between the exact and approximate solutions for a specific numerical problem to present the convergence of the numerical schemes, and demonstrate the resulting error in graphical representation.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分