咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Application of the Modified Ad... 收藏

Application of the Modified Adomian Decomposition Method on a Mathematical Model of COVID-19

Application of the Modified Adomian Decomposition Method on a Mathematical Model of COVID-19

作     者:Justina Mulenga Patrick Azere Phiri Justina Mulenga;Patrick Azere Phiri

作者机构:Department of Mathematics School of Mathematics and Natural Sciences The Copperbelt University Kitwe Zambia 

出 版 物:《Journal of Applied Mathematics and Physics》 (应用数学与应用物理(英文))

年 卷 期:2023年第11卷第9期

页      面:2597-2614页

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

主  题:COVID-19 Stability Analysis Equilibrium Points Adomian Decomposition Method Modified Adomian Decomposition Method Numerical Analysis 

摘      要:In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (RC) was calculated via the next generation matrix method. We also used the Lyaponuv method to show the global stability of both the disease free and endemic equilibrium points. The results showed that the disease-free equilibrium point is globally asymptotically stable if RC RC 1. We further used the Adomian decomposition method and the modified Adomian decomposition method to obtain the solutions of the model. Numerical analysis of the model was done using Sagemath 9.0 software.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分