Exploring nonlinear spatiotemporal effects for personalized next point-of-interest recommendation
一种基于非线性时空效应的个性化 下一个兴趣点推荐方法作者机构:Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijing 100083China
出 版 物:《Frontiers of Information Technology & Electronic Engineering》 (信息与电子工程前沿(英文版))
年 卷 期:2023年第24卷第9期
页 面:1273-1286页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Point-of-interest recommendation Spatiotemporal effects Long short-term memory(LSTM) Attention mechanism
摘 要:Next point-of-interest(POI)recommendation is an important personalized task in location-based social networks(LBSNs)and aims to recommend the next POI for users in a specific situation with historical check-in ***-of-the-art studies linearly discretize the user’s spatiotemporal information and then use recurrent neural network(RNN)based models for ***,these studies ignore the nonlinear effects of spatiotemporal information on user preferences and spatiotemporal correlations between user trajectories and candidate *** address these limitations,a spatiotemporal trajectory(STT)model is proposed in this *** use the long short-term memory(LSTM)model with an attention mechanism as the basic framework and introduce the user’s spatiotemporal information into the model in *** the process of encoding information,an exponential decay factor is applied to reflect the nonlinear drift of user interest over time and *** addition,we design a spatiotemporal matching module in the process of recalling the target to select the most relevant POI by measuring the relevance between the user’s current trajectory and the candidate *** evaluate the performance of our STT model with four real-world *** results show that our model outperforms existing state-of-the-art methods.