咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Weakly supervised point cloud ... 收藏

Weakly supervised point cloud segmentation via deep morphological semantic information embedding

作     者:Wenhao Xue Yang Yang Lei Li Zhongling Huang Xinggang Wang Junwei Han Dingwen Zhang 

作者机构:School of AutomationNorthwestern Polytechnical UniversityXi'anChina Institute of Mechanical and Electrical EngineeringBeijingChina School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina 

出 版 物:《CAAI Transactions on Intelligence Technology》 (智能技术学报(英文))

年 卷 期:2024年第9卷第3期

页      面:695-708页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2021B0101200001 National Natural Science Foundation of China,Grant/Award Numbers:61876140,U20B2065,U21B2048 Open Research Projects of Zhejiang Lab,Grant/Award Number:2019KD0AD01/010 

主  题:artificial intelligence computer vision deep learning 

摘      要:Segmenting the semantic regions of point clouds is a crucial step for intelligent agents to understand 3D *** supervised point cloud segmentation is highly desirable because entirely labelling point clouds is highly time-consuming and *** the low-costing labelling of 3D point clouds,the scene-level label is one of the most effortless label ***,due to the limitation of classifier discriminative capability and the orderless and structurless nature of the point cloud data,existing scene-level method is hard to transfer the semantic information,which usually leads to the under-activated or over-activated *** this end,a local semantic embedding network is introduced to learn local structural patterns and semantic ***,the proposed network contains graph convolution-based dilation and erosion embedding modules to implement‘inside-out’and‘outside-in’semantic information dissemination ***,the proposed weakly supervised learning framework could achieve the mutual propagation of semantic information in the foreground and *** experiments on the widely used ScanNet benchmark demonstrate the superior capacity of the proposed approach when compared to the current alternatives and baseline models.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分