咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Performance Comparison of Deep... 收藏

Performance Comparison of Deep and Machine Learning Approaches Toward COVID-19 Detection

作     者:Amani Yahyaoui Jawad Rasheed Shtwai Alsubai Raed M.Shubair Abdullah Alqahtani Buket Isler Rana Zeeshan Haider 

作者机构:Department of Software EngineeringIstanbul Sabahattin Zaim UniversityIstanbul34303Turkey Department of Software EngineeringNisantasi UniversityIstanbul34398Turkey Department of Computer ScienceCollege of Computer Engineering and SciencesPrince Sattam bin Abdulaziz UniversityAl-Kharj11942Saudi Arabia Department of Electrical and Computer EngineeringNew York University(NYU)Abu Dhabi129188United Arab Emirates College of Computer Engineering and SciencesPrince Sattam bin Abdulaziz UniversityAl-Kharj11942Saudi Arabia Department of Computer EngineeringIstanbul Topkapi UniversityIstanbul34087Turkey Baqai Institute of HematologyBaqai Medical UniversityKarachi75340Pakistan 

出 版 物:《Intelligent Automation & Soft Computing》 (智能自动化与软计算(英文))

年 卷 期:2023年第37卷第8期

页      面:2247-2261页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Artificial intelligence COVID-19 deep learning diagnosis machine learning 

摘      要:The coronavirus(COVID-19)is a disease declared a global pan-demic that threatens the whole *** then,research has accelerated and varied to find practical solutions for the early detection and correct identification of this *** researchers have focused on using the potential of Artificial Intelligence(AI)techniques in disease diagnosis to diagnose and detect the *** paper developed deep learning(DL)and machine learning(ML)-based models using laboratory findings to diagnose *** different methods are used in this study:K-nearest neighbor(KNN),Decision Tree(DT)and Naive Bayes(NB)as a machine learning method,and Deep Neural Network(DNN),Convolutional Neural Network(CNN),and Long-term memory(LSTM)as DL *** approaches are evaluated using a dataset obtained from the Israelita Albert Einstein Hospital in Sao Paulo,*** data consists of 5644 laboratory results from different patients,with 10%being Covid-19 positive *** dataset includes 18 attributes that characterize *** used accuracy,f1-score,recall and precision to evaluate the different developed *** obtained results confirmed these approaches’effectiveness in identifying COVID-19,However,ML-based classifiers couldn’t perform up to the standards achieved by DL-based *** all,NB performed worst by hardly achieving accuracy above 76%,Whereas KNN and DT compete by securing 84.56%and 85%accuracies,*** these,DL models attained better performance as CNN,DNN and LSTM secured more than 90%*** LTSM outperformed all by achieving an accuracy of 96.78%and an F1-score of 96.58%.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分