Multi-Topology Hierarchical Collaborative Hybrid Particle Swarm Optimization Algorithm for WSN
作者机构:School of Information Science&TechnologyNorthwestern UniversityXi’an 710127China Institute of Artificial IntelligenceXiamen UniversityXiamen 361102China Institute of Disaster Prevention and Ecological RestorationXi’an Jiaotong UniversityXi’an 710054China
出 版 物:《China Communications》 (中国通信(英文版))
年 卷 期:2023年第20卷第8期
页 面:254-275页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 080202[工学-机械电子工程] 08[工学] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术] 081001[工学-通信与信息系统] 0802[工学-机械工程]
基 金:supported by the National Key Research and Development Program Projects of China(No.2018YFC1504705) the National Natural Science Foundation of China(No.61731015) the Major instrument special project of National Natural Science Foundation of China(No.42027806) the Key Research and Development Program of Shaanxi(No.2022GY-331)
主 题:particle swarm optimizer levy flight multi-topology hierarchical collaborative framework lamarckian learning intuitive fuzzy entropy wireless sensor network
摘 要:Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor *** paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of *** divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and *** topologies are optimized in parallel to overcome the precocious convergence of *** paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC *** experimental results show that MHCHPSO outperforms the comparison *** addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems.