基于条件可逆网络的生成式图像隐写算法
Generative Image Steganography Via Conditional Invertible Neural Network作者机构:武汉大学国家网络安全学院武汉430072
出 版 物:《信息安全学报》 (Journal of Cyber Security)
年 卷 期:2023年第8卷第4期
页 面:17-30页
核心收录:
学科分类:0839[工学-网络空间安全] 08[工学] 081201[工学-计算机系统结构] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金项目支持(No.62172306) 湖北省重点研发计划项目(No.2021BAA034)支持
摘 要:近年来,随着生成模型的广泛使用,生成式隐写领域得到了快速发展。生成式隐写是在图像合成过程中隐藏信息的技术。它无需真实图像参与,只需秘密消息驱动生成模型即可合成载密图像。然而,现有方法无法控制生成的图像内容,因此不能保证隐蔽通信行为的安全性。针对上述问题,本文提出了基于条件可逆网络(Conditional Invertible Neural Network,cINN)的生成式图像隐写术steg-Cinn。在本文中,我们将信息隐藏建模为图像着色问题,并将秘密信息嵌入到灰度图像的颜色信息中。首先,我们使用映射模块将二进制秘密信息转换为服从标准正态分布的隐变量。而后,我们以灰度图像作为先验来指导着色过程,使用条件可逆网络来将隐变量映射为颜色信息。其中steg-Cinn生成的彩色图像匹配灰度图像的语义内容,从而保证了隐蔽通信的行为安全。对比实验结果表明,本文方法能够控制生成的图像内容并且使得合成颜色真实自然,在视觉隐蔽性方面表现良好。在统计安全性方面,本文方法的隐写分析检测正确率为56.28%,说明它能够抵御隐写分析检测。此外,本文方法在比特消息提取方面可以实现100%正确提取,这种情况下的隐藏容量是2.00 bpp。因此,与现有方法相比,本文方法在图像质量、统计安全性、比特提取正确率和隐藏容量方面取得了良好的综合性能表现。迄今为止,本文方法是在图像隐写术中首次使用cINN的工作。考虑到任何信息都可以转换为二进制形式,我们可以在图像中隐藏任意类型的数据,因此本文方法在现实世界里也具备实用价值。