A NOTE ON THE NONCONFORMING FINITE ELEMENTS FOR ELLIPTIC PROBLEMS
A NOTE ON THE NONCONFORMING FINITE ELEMENTS FOR ELLIPTIC PROBLEMS作者机构:School of Mathematical Sciences Peking University Beijing 100871 China ICMSEC AMSS Chinese Academy of Science Beijing 100190 PR China LMAM School of Mathematical Sciences Peking University Beijing 100871 China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2011年第29卷第2期
页 面:215-226页
核心收录:
学科分类:07[理学] 080202[工学-机械电子工程] 08[工学] 0804[工学-仪器科学与技术] 070102[理学-计算数学] 0802[工学-机械工程] 0701[理学-数学]
基 金:The work was supported by the National Natural Science Foundation of China (10871011)
主 题:Nonconforming finite element Elliptic boundary value problem Plate bending problem.
摘 要:In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.