LOCAL BIFURCATION OF STEADY ALMOST PERIODIC WATER WAVES WITH CONSTANT VORTICITY
作者机构:Department of MathematicsSun Yat-sen UniversityGuangzhou 510275China
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2023年第43卷第4期
页 面:1633-1644页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:partially the National Key R&D Program of China(2021YFA1002100) the NSFC(12171493,11701586) the FDCT(0091/2018/A3) the Guangdong Special Support Program(8-2015) the Key Project of NSF of Guangdong Province(2021A1515010296)
主 题:water waves almost periodic functions bifurcation theory constant vorticity
摘 要:In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat *** assume that the free surface is almost periodic in the horizontal *** conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary *** virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one *** bifurcation theory ensures that we can obtain an existence *** existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.