基于全透射近红外光谱的西瓜不同部位可溶性固形物含量在线检测研究
Online Detection of Soluble Solids Content in Different Parts of Watermelons Based on Full Transmission Near Infrared Spectroscopy作者机构:广西大学机械工程学院广西南宁530004 北京市农林科学院智能装备技术研究中心北京100097 国家农业智能装备工程技术研究中心北京100097
出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)
年 卷 期:2023年第43卷第6期
页 面:1800-1808页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070302[理学-分析化学] 0703[理学-化学]
基 金:国家西甜瓜产业技术体系专项资金项目(CARS-25-07)资助
主 题:近红外光谱 西瓜 可溶性固形物含量 在线检测 模型优化
摘 要:可溶性固形物含量(SSC)是评价西瓜果肉品质优劣的关键指标。西瓜SSC在线检测模型的建立,可以实现西瓜品质按其SSC进行在线分级,满足不同人群需求,提高市场竞争力。以160个京美2K西瓜为研究对象,通过实验室自主研发的在线检测设备,采集了西瓜两种姿态的可见近红外全透射光谱数据,分别与西瓜不同部位SSC建立偏最小二乘回归(PLSR)预测模型,探究西瓜SSC在线检测的最佳姿态和检测部位。首先,分别定义西瓜不同部位SSC测量值为瓜蒂糖、中心糖、瓜脐糖和整果糖,在线检测的两种姿态分别定义为T1姿态和T2姿态。其次对比西瓜不同部位SSC,探讨西瓜SSC评价标准。然后去除光谱透射强度值较低且频率较高,包含大量噪声和无用信息的光谱数据,最终选取波长范围(671~1116 nm)的光谱进行分析。采用卷积平滑(SGS)算法分别与多元散射校正(MSC)、单位矢量归一化(UVN)和标准正态变量变换(SNV)这3种算法相结合对两种姿态下的光谱数据进行预处理,随后对应西瓜不同部位SSC分别建立预测模型。通过对比不同模型的预测结果发现:使用SGS和MSC组合对T1姿态采集的光谱数据预处理效果最好,而对于T2姿态的光谱数据使用SGS与UVN结合预处理效果最好;T1姿态明显比T2姿态的光谱数据所建模型的预测效果好;对西瓜瓜蒂糖和整果糖的预测结果较好,瓜脐糖次之,中心糖最差。最后采用竞争性自适应重加权算法(CARS)分别对预测瓜蒂糖和整果糖的模型进行优化。其中,共挑选出81个波长点用于建立预测瓜蒂糖模型,106个波长点用于建立预测整果糖模型,两模型的预测集相关系数分别为0.8810和0.8758,均方根误差分别为0.8667%和0.7589%,不仅模型得到了简化,还提高了模型的预测精度。研究结果表明,西瓜不同姿态和对不同部位SSC预测的差异,会影响西瓜SSC在线检测和品质评价分级结果,应根据用户的实际需求进行模型选取和优化;为此,提出了糖度评价指数,为进一步开发西瓜SSC在线检测设备提供了技术支撑。