基于弱监督鲁棒性自编码的高光谱异常检测
Hyperspectral anomaly detection based on the weakly supervised robust autoencoder作者机构:山东建筑大学测绘地理信息学院济南250101 自然资源部第一大地测量队西安710054 浙江中测新图地理信息技术有限公司湖州313200 宁波市鄞州区测绘院宁波315041
出 版 物:《自然资源遥感》 (Remote Sensing for Natural Resources)
年 卷 期:2023年第35卷第2期
页 面:167-175页
核心收录:
学科分类:083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学] 09[农学] 0804[工学-仪器科学与技术] 0903[农学-农业资源与环境] 0816[工学-测绘科学与技术] 081602[工学-摄影测量与遥感] 081102[工学-检测技术与自动化装置] 0811[工学-控制科学与工程]
摘 要:高光谱异常检测因其以无监督方式检测目标的能力而受到特别关注,自动编码器及其变体可以自动提取深层特征,还可以检测异常目标。由于训练集中存在异常,自动编码器泛化性较强,从而降低了从背景中区分异常的能力。为解决上述问题,该文提出一种基于弱监督鲁棒性自编码的异常探测算法。首先提出了一种显著类别搜索策略,采用基于概率的类别阈值来标记粗样本,为网络弱监督学习做准备;同时,构建一个具有l_(2,1)范数与异常-背景光谱距离共同约束的鲁棒性自编码网络框架,该框架在训练期间对噪声和异常具有鲁棒性;最后,采用所有样本得到的重构误差检测异常目标。在4个高光谱数据集上进行实验,结果表明,与其他先进的异常检测算法相比,所提算法具有更好的检测性能。