Parallel Implementation of the CCSDS Turbo Decoder on GPU
作者机构:School of Computer&Communication EngineeringUniversity of Science and Technology BeijingBeijing 100083China School of Electronic and Information EngineeringBeihang UniversityBeijing 100191China Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous ServicesInstitute of Artificial IntelligenceUniversity of Science and Technology BeijingBeijing 100083China School of Information EngineeringZhengzhou UniversityZhengzhou 450001China School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijing 100083China
出 版 物:《China Communications》 (中国通信(英文版))
年 卷 期:2024年第21卷第10期
页 面:70-77页
核心收录:
学科分类:07[理学] 08[工学] 070104[理学-应用数学] 081101[工学-控制理论与控制工程] 0701[理学-数学] 0811[工学-控制科学与工程]
基 金:supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1) Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)
主 题:CCSDS CUDA GPU parallel decoding turbo codes
摘 要:This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)***,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism *** mitigate this issue,we propose a padding method that inserts several bits before the information frame *** obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are *** presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small *** proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.