基于FS-T2WI序列联合机器学习对布鲁氏菌性脊柱炎与结核性脊柱炎的鉴别诊断
Differential diagnosis of brucellar spondylitis and tuberculous spondylitis based on FS-T2WI sequence combined with machine learning作者机构:新疆医科大学第一附属医院影像中心乌鲁木齐830054 慧影医疗科技(北京)股份有限公司北京100192
出 版 物:《中华地方病学杂志》 (Chinese Journal of Endemiology)
年 卷 期:2023年第42卷第5期
页 面:356-362页
学科分类:1002[医学-临床医学] 100210[医学-外科学(含:普外、骨外、泌尿外、胸心外、神外、整形、烧伤、野战外)] 10[医学]
基 金:省部共建中亚高发病成因与防治国家重点实验室开放课题基金(SKL-HIDCA-2021-22)
主 题:机器学习 布鲁氏菌性脊柱炎 结核性脊柱炎 脂肪抑制 鉴别诊断
摘 要:目的探讨脂肪抑制(FS)-T2WI序列联合机器学习模型在布鲁氏菌性脊柱炎(BS)与结核性脊柱炎(TS)鉴别诊断中的效能。方法回顾性分析2017年1月至2022年1月在新疆医科大学第一附属医院经临床或术后病理确诊的74例BS与81例TS患者的临床及影像资料,所有患者治疗前均行脊柱磁共振成像(MRI)检查。以8∶2的分配比例将患者随机分成训练组(n=123)和测试组(n=32),对FS-T2WI序列图像进行影像组学特征提取及降维分析。采用4种机器学习算法[包括K邻近算法(KNN)、支持向量机(SVM)、随机森林(RF)及逻辑回归(LR)]构建影像组学模型,并使用受试者工作特征(ROC)曲线分析各模型对BS与TS的鉴别诊断效能。结果共提取出1409个影像组学特征,经筛选纳入了7个相关的特征用于鉴别BS和TS,其中Maximum2DDiameterColumn特征值表现出较强的相关性,BS与TS患者间比较差异有统计学意义(P0.001)。在测试组中,SVM模型鉴别BS和TS的ROC曲线下面积(AUC)值为0.886,敏感度为0.53,特异度为0.88,模型诊断精确率为0.81;在训练组中,SVM模型鉴别BS和TS的AUC值为0.811,敏感度为0.68,特异度为0.72,模型诊断精确率为0.78。结论基于FS-T2WI序列联合机器学习建立的模型可用于鉴别BS与TS,其中SVM模型的诊断效能优且性能稳定。