Adaptive Graph Convolutional Recurrent Neural Networks for System-Level Mobile Traffic Forecasting
作者机构:Beijing University of Posts and TelecommunicationsBeijing 100876China The Intelligent Network Innovation Center of ChinaunicomBeijing 100048China
出 版 物:《China Communications》 (中国通信(英文版))
年 卷 期:2023年第20卷第10期
页 面:200-211页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 12[管理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0810[工学-信息与通信工程] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术] 081001[工学-通信与信息系统] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Natural Science Foundation of China(61975020 62171053)
主 题:adaptive graph convolutional network mobile traffic prediction spatial-temporal dependence
摘 要:Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource ***-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic *** graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large *** research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base *** overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural *** on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.