咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Predicting buckling of carbon ... 收藏

Predicting buckling of carbon fiber composite cylindrical shells based on backpropagation neural network improved by sparrow search algorithm

作     者:Wei Guan Yong-mei Zhu Jun-jie Bao Jian Zhang Wei Guan;Yong-mei Zhu;Jun-jie Bao;Jian Zhang

作者机构:School of Mechanical EngineeringJiangsu University of Science and TechnologyZhenjiang212003JiangsuChina 

出 版 物:《Journal of Iron and Steel Research International》 (国际钢铁研究杂志)

年 卷 期:2023年第30卷第12期

页      面:2459-2470页

核心收录:

学科分类:08[工学] 080102[工学-固体力学] 0801[工学-力学(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foundation of China(Grant No.52271277) the Natural Science Foundation of Jiangsu Province(Grant.No.BK20211343) the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(Grant.No.GKZD010081) Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant.No.SJCX22_1906) 

主  题:Composite cylindrical shell:Carbon fiber Backpropagation neural network Sparrow search algorithm Buckling 

摘      要:The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and *** buckling behavior of CF-CCSs was analyzed by finite element and ***,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element *** this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was *** results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,*** buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分