A Characterization of PM-compact Hamiltonian Bipartite Graphs
A Characterization of PM-compact Hamiltonian Bipartite Graphs作者机构:School of Mathematics and Statistics Zhengzhou University
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2015年第31卷第2期
页 面:313-324页
核心收录:
学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 070205[理学-凝聚态物理] 08[工学] 070104[理学-应用数学] 0701[理学-数学] 0702[理学-物理学]
基 金:Supported by the National Natural Science Foundation of China under Grant No.11101383 11271338 and 11201432
主 题:perfect matching polytope perfect-matching graph bipartite graph hamiltonian graph
摘 要:The perfect matching polytope of a graph G is the convex hull of the incidence vectors of all perfect matchings in G. A graph is called perfect matching compact(shortly, PM-compact), if its perfect matching polytope has diameter one. This paper gives a complete characterization of simple PM-compact Hamiltonian bipartite graphs. We first define two families of graphs, called the H2C-bipartite graphs and the H23-bipartite graphs, respectively. Then we show that, for a simple Hamiltonian bipartite graph G with |V(G)| ≥ 6, G is PM-compact if and only if G is K3,3, or G is a spanning Hamiltonian subgraph of either an H2C-bipartite graph or an H23-bipartite graph.