Probabilistic hypergraph based hash codes for social image search
Probabilistic hypergraph based hash codes for social image search作者机构:Department of Information Science and Electronic Engineering Zhejiang University
出 版 物:《Journal of Zhejiang University-Science C(Computers and Electronics)》 (浙江大学学报C辑(计算机与电子(英文版))
年 卷 期:2014年第15卷第7期
页 面:537-550页
核心收录:
学科分类:0810[工学-信息与通信工程] 08[工学] 080203[工学-机械设计及理论] 0805[工学-材料科学与工程(可授工学、理学学位)] 0802[工学-机械工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Project supported by the National Basic Research Program(973)of China(No.2012CB316400)
主 题:Hypergraph Laplacian Probabilistic hypergraph Hash codes Image search
摘 要:With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing(SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order repre-sentation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hy-peredges. Experiments on Flickr image datasets verify the performance of our proposed approach.