Low Dimensional Cohomology of Hom-Lie Algebras and q-deformed W(2, 2) Algebra
Low Dimensional Cohomology of Hom-Lie Algebras and q-deformed W(2, 2) Algebra作者机构:Science Research Center Academy of Fundamental and Interdisciplinary SciencesHarbin Institute of Technology School of Mathematical Sciences Suzhou University
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2014年第30卷第6期
页 面:1073-1082页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Supported by China Scholarship Council(Grant No.201206125047) China Postdoctoral Science Foundation Funded Project(Grant No.2012M520715) the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201462)
主 题:Hom-Lie algebras q-deformed W(2 2) algebra derivation second cohomology group first cohomology group
摘 要:This paper aims to study low dimensional cohomology of Hom-Lie algebras and the qdeformed W(2, 2) algebra. We show that the q-deformed W(2, 2) algebra is a Hom-Lie algebra. Also,we establish a one-to-one correspondence between the equivalence classes of one-dimensional central extensions of a Hom-Lie algebra and its second cohomology group, leading us to determine the second cohomology group of the q-deformed W(2, 2) algebra. In addition, we generalize some results of derivations of finitely generated Lie algebras with values in graded modules to Hom-Lie *** application, we compute all αk-derivations and in particular the first cohomology group of the q-deformed W(2, 2) algebra.