咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Game Theory-Based Dynamic Weig... 收藏

Game Theory-Based Dynamic Weighted Ensemble for Retinal Disease Classification

作     者:Kanupriya Mittal V.Mary Anita Rajam 

作者机构:Department of CSECEGAnna UniversityChennai600025India 

出 版 物:《Intelligent Automation & Soft Computing》 (智能自动化与软计算(英文))

年 卷 期:2023年第35卷第2期

页      面:1907-1921页

核心收录:

学科分类:0502[文学-外国语言文学] 050201[文学-英语语言文学] 05[文学] 

主  题:Game theory weighted ensemble fuzzy rough sets retinal disease 

摘      要:An automated retinal disease detection system has long been in exis-tence and it provides a safe,no-contact and cost-effective solution for detecting this *** paper presents a game theory-based dynamic weighted ensem-ble of a feature extraction-based machine learning model and a deep transfer learning model for automatic retinal disease *** feature extraction-based machine learning model uses Gaussian kernel-based fuzzy rough sets for reduction of features,and XGBoost classifier for the classifi*** transfer learning model uses VGG16 or ResNet50 or Inception-ResNet-v2.A novel ensemble classifier based on the game theory approach is proposed for the fusion of the outputs of the transfer learning model and the XGBoost classifier *** ensemble approach significantly improves the accuracy of retinal disease pre-diction and results in an excellent performance when compared to the individual deep learning and feature-based models.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分