咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Research on Adaptive TSSA-HKRV... 收藏

Research on Adaptive TSSA-HKRVM Model for Regression Prediction of Crane Load Spectrum

作     者:Dong Qing Qi Song Shuangyun Huang Gening Xu 

作者机构:College of Mechanical EngineeringTaiyuan University of Science and TechnologyTaiyuan030024China Zhuzhou Tianqiao Crane Co.Ltd.Zhuzhou412001China 

出 版 物:《Computer Modeling in Engineering & Sciences》 (工程与科学中的计算机建模(英文))

年 卷 期:2023年第136卷第9期

页      面:2345-2370页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:sponsored by the National Natural Science Foundation of China(52105269) 

主  题:Heterogeneous kernel function RVM TSSA adaptive update mechanism equivalent load spectrum 

摘      要:For the randomness of crane working load leading to the decrease of load spectrum prediction accuracy with time,an adaptive TSSA-HKRVM model for crane load spectrum regression prediction is *** heterogeneous kernel relevance vector machine model(HKRVM)with comprehensive expression ability is established using the complementary advantages of various kernel *** combination strategy consisting of refraction reverse learning,golden sine,and Cauchy mutation+logistic chaotic perturbation is introduced to form a multi-strategy improved sparrow algorithm(TSSA),thus optimizing the relevant parameters of *** adaptive updatingmechanismof the heterogeneous kernel RVMmodel under themulti-strategy improved sparrow algorithm(TSSA-HKMRVM)is defined by the sliding window design *** on the sample data of the measured load spectrum,the trained adaptive TSSA-HKRVMmodel is employed to complete the prediction of the crane equivalent load *** this method toQD20/10 t×43m×12mgeneral bridge crane,the results show that:compared with other prediction models,although the complexity of the adaptive TSSA-HKRVMmodel is relatively high,the prediction accuracy of the load spectrum under long periods has been effectively improved,and the completeness of the load information during thewhole life cycle is relatively higher,with better applicability.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分