无线传感器网络下线性支持向量机分布式协同训练方法研究
Research on the Distributed Training Method for Linear SVM in WSN作者机构:北京工业大学嵌入式软件与系统研究所北京100124 河北工程大学信息与电气工程学院邯郸056038
出 版 物:《电子与信息学报》 (Journal of Electronics & Information Technology)
年 卷 期:2015年第37卷第3期
页 面:708-714页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081201[工学-计算机系统结构] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金青年基金(61203377)资助课题
主 题:无线传感器网络 支持向量机 分布式学习 增广拉格朗日乘子法 平均一致性
摘 要:针对无线传感器网络中分散在各节点上的训练数据传输到数据融合中心集中训练支持向量机(Support Vector Machine,SVM)时存在的高通信代价和高能量消耗问题,该文研究了仅依靠相邻节点间的相互协作,在网内分布式协同训练线性SVM的方法。首先,在各节点分类器决策变量与集中式分类器决策变量相一致的约束下,对集中式SVM训练问题进行等价分解,然后利用增广拉格朗日乘子法,对分解后的SVM问题进行求解和推导,进而提出基于全局平均一致性的线性SVM分布式训练算法(Average Consensus based Distributed Supported Vector Machine,AC-DSVM);为了降低AC-DSVM算法中全局平均一致性的通信开销,利用相邻节点间的局部平均一致性近似全局平均一致性,提出基于一次全局平均一致性的线性SVM分布式训练算法(Once Average Consensus based Distributed Supported Vector Machine,1-AC-DSVM)。仿真实验结果表明,与已有算法相比,AC-DSVM算法的迭代次数和数据传输量略高,但其能够完全收敛到集中式训练结果;1-AC-DSVM算法具有较好的收敛性,而且在收敛速度和数据传输量上也表现出显著优势。