结合广义Armijo步长搜索的一类新的三项共轭梯度算法及其收敛特征
GLOBAL CONVERGENCE RESULTS OF A NEW THREE TERMS CONJUGATE GRADIENT METHOD WITH GENERALIZED ARMIJO STEP SIZE RULE作者机构:大连理工大学应用数学系辽宁大连116024 石油大学应用数学系山东东营257062
出 版 物:《计算数学》 (Mathematica Numerica Sinica)
年 卷 期:2004年第26卷第1期
页 面:25-36页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学]
主 题:广义Armijo步长搜索 三项共轭梯度算法 收敛特征 非线性规划
摘 要:In this paper, we consider the convergence properties of a new class of three terms conjugate gradient methods with generalized Armijo step size rule for minimizing a continuously differentiable function f on R^π without assuming that the sequence {xk} of iterates is bounded. We prove that the limit infimum of ‖↓△f(xk)‖ is Zero. Moreover, we prove that, when f(x) is pseudo-convex (quasi-convex) function, this new method has strong convergence results: either xk→x* and x* is a minimizer (stationary point); or ‖xk‖→∞, arg min{f(x) :x∈R^n} =φ, and.f(xk) ↓ inf(f(x) : x∈R^n}. Combining FR, PR, HS methods with our new method, FR, PR, HS methods are modified to have global convergence *** result show that the new algorithms are efficient by comparing with FR,PR, HS conjugate gradient methods with Armijo step size rule.