SVM-based Identification and Un-calibrated Visual Servoing for Micro-manipulation
SVM-based Identification and Un-calibrated Visual Servoing for Micro-manipulation作者机构:Department of Control Science and Engineering Huazhong University of Science and Technology Wuhan PRC
出 版 物:《International Journal of Automation and computing》 (国际自动化与计算杂志(英文版))
年 卷 期:2010年第7卷第1期
页 面:47-54页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Natural Science Foundation of China (No.60873032) National High Technology Research and Development Program of China (863 Program) (No.2008AA8041302)
主 题:Micro-assembly support vector machine part identification Broyden method visual servoing
摘 要:This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set's discernible matrix is proposed to identify and classify micro-targets. To avoid the complicated calibration for intrinsic parameters of camera, an improved Broyden's method is proposed to estimate the image Jacobian matrix which employs Chebyshev polynomial to construct a cost function to approximate the optimization value. Finally, a visual controller is designed for a robotic micromanipulation system. The experiment results of micro-parts assembly show that the proposed methods and algorithms are effective and feasible.