Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation
作者机构:University of Chinese Academy of SciencesSchool of Integrated CircuitsBejing 100049China Chinese Academy of SciencesInstitute of MicroelectronicsBeijing 100029China
出 版 物:《Microsystems & Nanoengineering》 (微系统与纳米工程(英文))
年 卷 期:2023年第9卷第2期
页 面:307-319页
核心收录:
学科分类:07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:supported by the Scientific Research Foundation of the University of Chinese Academy of Sciences(no.118900M032) China Fundamental Research Funds for the Central Universities(Grant#E2ET3801)
主 题:pattern effect distortion
摘 要:Plasmonic lithography,which uses the evanescent electromagnetic(EM)fields to generate image beyond the diffraction limit,has been successfully demonstrated as an alternative lithographic technology for creating sub-1o nm ***,the obtained photoresist pattern contour in general exhibits a very poor fidelity due to the near-field optical proximity effect(OPE),which is far below the minimum requirement for *** the near-field OPE formation mechanism is important to minimize its impact on nanodevice fabrication and improve its lithographic *** this work,a point-spread function(PSF)generated by a plasmonic bowtie-shaped nanoaperture(BNA)is employed to quantify the photon-beam deposited energy in the near-field patterning *** achievable resolution of plasmonic lithography has successfully been enhanced to approximately 4 nm with numerical simulations.A field enhancement factor(F)as a function of gap size is defined to quantitatively evaluate the strong near-field enhancement effect excited by a plasmonic BNA,which also reveals that the high enhancement of the evanescent field is due to the strong resonant coupling between the plasmonic waveguide and the surface plasmon waves(SPWs).However,based on an investigation of the physical origin of the near-field OPE,and the theoretical calculations and simulation results indicate that the evanescent-field-induced rapid loss of high-k information is one of the main optical contributors to the near-feld ***,an analytic formula is introduced to quantitatively analyze the effect of the rapidly decaying feature of the evanescent field on the final exposure pattern ***,a fast and effective optimization method based on the compensation principle of the exposure dose is proposed to reduce the pattern distortion by modulating the exposure map with dose *** proposed pattern quality enhancement method can open new possibilities in the manufacture of nan