咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >ML and CFD Simulation of Flow ... 收藏

ML and CFD Simulation of Flow Structure around Tandem Bridge Piers in Pressurized Flow

作     者:Aliasghar Azma Ramin Kiyanfar Yakun Liu Masoumeh Azma Di Zhang Ze Cao Zhuoyue Li 

作者机构:School of Hydraulic EngineeringFaculty of Infrastructure EngineeringDalian University of TechnologyDalian116024China Department of Art and ArchitecturePayame Noor UniversityShiraz19395-4697Iran School of Foreign LanguagesNanjing Xiaozhuang UniversityNanjing211171China 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2023年第75卷第4期

页      面:1711-1733页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foundation of China (Grant Nos.52179060 and 51909024) 

主  题:Bridge pier scour process deck width machine learning turbulent structure 

摘      要:Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the *** a result,specific infrastructures,notably bridges,would experience significant flooding for which they were not intended and would be *** flow field and shear stress distribution around tandem bridge piers under pressurized flow conditions for various bridge deck widths are examined using a series of three-dimensional(3D)*** is indicated that scenarios with a deck width to pier diameter(Ld/p)ratio of 3 experience the highest levels of turbulent *** addition,maximum velocity and shear stresses occur in cases with Ld/p equal to *** indicate that increasing the number of piers from 1 to 2 and 3 results in the increase of bed shear stress by 24%and 20%***,five machine learning algorithms,including Decision Trees(DT),Feed Forward Neural Networks(FFNN),and three Ensemble models,are implemented to estimate the flow field and the turbulent *** indicated that the highest accuracy for estimation of U,and W,were obtained using AdaBoost ensemble with R2=0.946 and 0.951,***,the Random Forest algorithm outperformed AdaBoost slightly in the estimation of V and turbulent kinetic energy(TKE)with R2=0.894 and 0.951,respectively.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分