Global Stability of a Time-delayed Malaria Model with Standard Incidence Rate
作者机构:School of ScienceBeijing University of Civil Engineering and ArchitectureBeijing 102616China Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2023年第39卷第2期
页 面:211-221页
核心收录:
学科分类:1002[医学-临床医学] 07[理学] 100201[医学-内科学(含:心血管病、血液病、呼吸系病、消化系病、内分泌与代谢病、肾病、风湿病、传染病)] 070104[理学-应用数学] 0701[理学-数学] 10[医学]
基 金:supported in part by the National Natural Science Foundation of China (Nos.11901027,11871093 and 12171003) the China Postdoctoral Science Foundation (No.2021M703426) the Pyramid Talent Training Project of BUCEA (No.JDYC20200327) the BUCEA Post Graduate Innovation Project (No.PG2022143)
主 题:malaria model delay differential equations Lyapunov functional weak persistence global stability
摘 要:A four-dimensional delay differential equations(DDEs)model of malaria with standard incidence rate is *** utilizing the limiting system of the model and Lyapunov direct method,the global stability of equilibria of the model is obtained with respect to the basic reproduction number R_(0).Specifically,it shows that the disease-free equilibrium E^(0)is globally asymptotically stable(GAS)for R_(0)***,to obtain the global stability of the equilibrium E^(*)for R_(0)1,the weak persistence of the model is proved by some analysis techniques.