基于改进RF-XGBoost算法的列车运行晚点预测研究
Research on Train Delay Prediction Based on Improved RF-XGBoost Algorithm作者机构:兰州交通大学自动化与电气工程学院兰州730070 北京康吉森交通技术有限公司北京101318
出 版 物:《铁道标准设计》 (Railway Standard Design)
年 卷 期:2023年第67卷第3期
页 面:38-43页
学科分类:08[工学] 082303[工学-交通运输规划与管理] 0814[工学-土木工程] 082301[工学-道路与铁道工程] 0823[工学-交通运输工程]
主 题:高速铁路 特征选择 随机森林 晚点预测 XGBoost算法
摘 要:为度量列车晚点造成的影响,将传统随机森林(RF)与极端梯度提升树(XGBoost)相结合,采用改进的RF-XGBoost算法对高铁列车运行晚点进行预测。以济青高铁为例,将其原始数据预处理并根据特征重要度排序,选取前7个参数组成晚点特征自变量,以预测到站晚点时间为因变量。将列车实际到达时间等7个特征变量输入RF-XGBoost预测模型中参与训练。前200次列车的晚点预测结果表明:预测晚点与实际晚点时间的曲线变化趋势大致相同。相较于XGBoost算法,本文提出的方法MAE和RMSE值分别降低60.5%与44.8%, R2值提高14.6%,且在允许预测误差5 min的范围内,精度达到97.78%,此方法拥有更优的晚点时长预测性能,对铁路实时调度与提升客运质量至关重要。