Single-pulse real-time billion-frames-per-second planar imaging of ultrafast nanoparticle-laser dynamics and temperature in flames
作者机构:Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringDepartment of Electrical EngineeringCalifornia Institute of Technology1200 East California BoulevardMail Code 138-78PasadenaCA91125USA NASA-Jet Propulsion LaboratoryCalifornia Institute of Technology4800 Oak Grove DrivePasadenaCA91109USA Department of PhysicsUniversity of GothenburgSE 41296GothenburgSweden Institute of Engineering Thermodynamics(LTT)and Erlangen Graduate School in Advanced Optical Technologies(SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg(FAU)91058ErlangenGermany
出 版 物:《Light(Science & Applications)》 (光(科学与应用)(英文版))
年 卷 期:2023年第12卷第3期
页 面:379-390页
核心收录:
学科分类:0808[工学-电气工程] 080901[工学-物理电子学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 0805[工学-材料科学与工程(可授工学、理学学位)] 0803[工学-光学工程] 0702[理学-物理学]
摘 要:Unburnt hydrocarbon flames produce soot,which is the second biggest contributor to global warming and harmful to human *** state-of-the-art high-speed imaging techniques,developed to study non-repeatable turbulent flames,are limited to million-frames-per-second imaging rates,falling short in capturing the dynamics of critical ***,these techniques do not provide a complete picture of flame-laser interactions,important for understanding soot ***,thermal effects induced by multiple consecutive pulses modify the optical properties of soot nanoparticles,thus making single-pulse imaging ***,we report single-shot laser-sheet compressed ultrafast photography(LS-CUP)for billion-frames-per-second planar imaging of flame-laser *** observed laser-induced incandescence,elastic light scattering,and fluorescence of soot precursors-polycyclic aromatic hydrocarbons(PAHs)in real-time using a single nanosecond laser *** spatiotemporal maps of the PAHs emission,soot temperature,primary nanoparticle size,soot aggregate size,and the number of monomers,present strong experimental evidence in support of the theory and modeling of soot inception and growth mechanism in ***-CUP represents a generic and indispensable tool that combines a portfolio of ultrafast combustion diagnostic techniques,covering the entire lifecycle of soot nanoparticles,for probing extremely short-lived(picoseconds to nanoseconds)species in the spatiotemporal domain in non-repeatable turbulent ***,LS-CUP’s unparalleled capability of ultrafast wide-field temperature imaging in real-time is envisioned to unravel mysteries in modern physics such as hot plasma, sonoluminescence, and nuclear fusion.