Physics-informed neural networks for diffraction tomography
作者机构:École Polytechnique Fédérale de LausanneOptics LaboratoryLausanneSwitzerland
出 版 物:《Advanced Photonics》 (先进光子学(英文))
年 卷 期:2022年第4卷第6期
页 面:44-55页
核心收录:
学科分类:070207[理学-光学] 07[理学] 08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 0803[工学-光学工程] 0702[理学-物理学]
基 金:the Swiss National Science Foundation(SNSF)under funding number 514481
主 题:deep learning physics-informed neural networks scattering three-dimensional imaging optical diffraction tomography
摘 要:We propose a physics-informed neural network(PINN)as the forward model for tomographic reconstructions of biological *** demonstrate that by training this network with the Helmholtz equation as a physical loss,we can predict the scattered field *** will be shown that a pretrained network can be fine-tuned for different samples and used for solving the scattering problem much faster than other numerical *** evaluate our methodology with numerical and experimental *** PINNs can be generalized for any forward and inverse scattering problem.