咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Detection Collision Flows in S... 收藏

Detection Collision Flows in SDN Based 5G Using Machine Learning Algorithms

作     者:Aqsa Aqdus Rashid Amin Sadia Ramzan Sultan S.Alshamrani Abdullah Alshehri El-Sayed M.El-kenawy 

作者机构:Department of Computer Science University of Engineering and TechnologyTaxila47050Pakistan Department of Computer ScienceCollege of Computers and Information TechnologyTaif UniversityP.O.Box 11099Taif21944Saudi Arabia Department of Information TechnologyAl Baha UniversityAl BahaSaudi Arabia Department of Communications and ElectronicsDelta Higher Institute of Engineering and TechnologyMansoura35111Egypt 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2023年第74卷第1期

页      面:1413-1435页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:Taif University Researchers supporting Project number(TURSP-2020/215) Taif University Taif Saudi Arabia 

主  题:5G networks software-defined networking(SDN) OpenFlow load balancing machine learning(ML) feed forward neural network(FFNN) k-means and decision tree(DT) 

摘      要:The rapid advancement of wireless communication is forming a hyper-connected 5G network in which billions of linked devices generate massive amounts of *** traffic control and data forwarding functions are decoupled in software-defined networking(SDN)and allow the network to be *** switch in SDN keeps track of forwarding information in a flow *** SDN switches must search the flow table for the flow rules that match the packets to handle the incoming *** to the obvious vast quantity of data in data centres,the capacity of the flow table restricts the data plane’s forwarding ***,the SDN must handle traffic from across the whole *** flow table depends on Ternary Content Addressable Memorable Memory(TCAM)for storing and a quick search of regulations;it is restricted in capacity owing to its elevated cost and energy *** the flow table is abused and overflowing,the usual regulations cannot be executed *** this case,we consider lowrate flow table overflowing that causes collision flow rules to be installed and consumes excessive existing flow table capacity by delivering packets that don’t fit the flow table at a low *** study introduces machine learning techniques for detecting and categorizing low-rate collision flows table in SDN,using Feed ForwardNeuralNetwork(FFNN),K-Means,and Decision Tree(DT).We generate two network topologies,Fat Tree and Simple Tree Topologies,with the Mininet simulator and coupled to the OpenDayLight(ODL)*** efficiency and efficacy of the suggested algorithms are assessed using several assessment indicators such as success rate query,propagation delay,overall dropped packets,energy consumption,bandwidth usage,latency rate,and *** findings showed that the suggested technique to tackle the flow table congestion problem minimizes the number of flows while retaining the statistical consistency of the 5G *** putting the proposed flow method

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分