Adaptive Resource Planning for AI Workloads with Variable Real-Time Tasks
作者机构:Department of Computer Science and EngineeringEwha UniversitySeoul03760Korea Embedded Software Research CenterEwha UniversitySeoul03760Korea
出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))
年 卷 期:2023年第74卷第3期
页 面:6823-6833页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:This work was partly supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by theKorean government(MSIT)(No.2021-0-02068,Artificial Intelligence Innovation Hub) No.RS-2022-00155966,Artificial Intelligence Convergence Innovation Human Resources Development(Ewha University)
主 题:Resource planning artificial intelligence real-time system task scheduling optimization problem genetic algorithm
摘 要:AI(Artificial Intelligence)workloads are proliferating in modernreal-time *** the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be *** particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline *** cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two ***,resource planning for AI workloadsis a complicated search problem that requires much time for ***,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in *** on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of *** of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of ***,in any case,the workload isimmediately executed according to the resource plan ***,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload *** proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its *** show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.