Parameter estimation of the structured illumination pattern based on principal component analysis (PCA): PCA-SIM
作者机构:Department of Biomedical EngineeringCollege of Future TechnologyPeking University100871 BeijingChina National Biomedical Imaging CenterPeking University100871 BejingChina
出 版 物:《Light(Science & Applications)》 (光(科学与应用)(英文版))
年 卷 期:2023年第12卷第2期
页 面:150-152页
核心收录:
学科分类:070207[理学-光学] 07[理学] 08[工学] 0803[工学-光学工程] 0702[理学-物理学]
主 题:pattern illumination component
摘 要:Principal component analysis(PCA),a common dimensionality reduction method,is introduced into SIM to identify the frequency vectors and pattern phases of the illumination pattern with precise subpixel accuracy,fast speed,and noise-robustness,which is promising for real-time and long-term live-cell imaging.