Intelligent Machine Learning Enabled Retinal Blood Vessel Segmentation and Classification
作者机构:Department of Computer ScienceCollege of Computer Science and Information TechnologyKing Faisal UniversityP.O.Box 400AlAhsa31982Saudi Arabia College of Computer Science and Information SystemsNajran UniversityNajran61441Saudi Arabia
出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))
年 卷 期:2023年第74卷第1期
页 面:399-414页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 1002[医学-临床医学] 081104[工学-模式识别与智能系统] 08[工学] 100212[医学-眼科学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 10[医学]
主 题:Edge detection blood vessel segmentation retinal fundus images image classification deep learning
摘 要:Automated segmentation of blood vessels in retinal fundus images is essential for medical image *** segmentation of retinal vessels is assumed to be essential to the progress of the decision support system for initial analysis and treatment of retinal *** article develops a new Grasshopper Optimization with Fuzzy Edge Detection based Retinal Blood Vessel Segmentation and Classification(GOFED-RBVSC)*** proposed GOFED-RBVSC model initially employs contrast enhancement ***,GOAFED approach is employed to detect the edges in the retinal fundus images in which the use of GOA adjusts the membership *** ORB(Oriented FAST and Rotated BRIEF)feature extractor is exploited to generate feature ***,Improved Conditional Variational Auto Encoder(ICAVE)is utilized for retinal image classification,shows the novelty of the *** performance validation of the GOFEDRBVSC model is tested using benchmark dataset,and the comparative study highlighted the betterment of the GOFED-RBVSC model over the recent approaches.